Recent Developments in Characterizing Liquefiable Sandy Soils in the Field and Laboratory

Kenneth H. Stokoe, II,
Julia N. Roberts,
Sungmoon Hwang,
Yaning Wang,
Benchen Zhang,
Zhongze (Steve) Xu, and
Brady R. Cox

University of Texas at Austin

GeoVirginia 2018
Williamsburg, VA
April 9-11, 2018
Outline

1. Present results from recent (2013) in-situ liquefaction testing in Christchurch, NZ with T-Rex in terms of $r_u - \log \gamma$ at given N’s.

2. Investigate the dynamic response of the sand skeleton using the combined field and extrapolated $r_u - \log \gamma$ relationship ($N = 30$ cycles) with the effective-stress, $G - \log \gamma$ relationship determined from dynamic laboratory testing of the actual soil.

3. Briefly present the $\tau - \gamma$ curves determined from the $G - \log \gamma$ relationships with and without pore water pressure.

4. Very briefly introduce improvements in:
 - modeling ($G/G_{\text{max}} - \log \gamma$) of sands (SP, SW and SM),
 - combined dynamic and cyclic laboratory testing, and
 - next-generation field liquefaction testing.

5. Conclusions

6. Acknowledgments
2010-2011 Canterbury Earthquake Sequence

Canterbury Earthquake Sequence

Legends

- 3.0 – 3.9
- 4.0 – 4.9
- 5.0 – 5.9

- Sep. 2010, $M_w = 7.1$
- Feb. 2011, $M_w = 6.2$
- Jun. 2011, $M_w = 5.9$
- Dec. 2011, $M_w = 6.0$

CBD

Christchurch Area
Severe Liquefaction in Suburbs

from Prof. Misko Cubrinovski
1. Example: Field Shaking Tests at Site 6 and Associated Dynamic and Cyclic Laboratory Tests

Legend:
- **Red**: Moderate to severe liquefaction
- **Yellow**: Low to moderate liquefaction
- **Pink**: Liquefaction on roads (predominantly, no/localized liquefaction on properties)
Plan View of Site 6 with Natural Soil Test Panel
(Ariel Photograph Before Homes Removed)
Pre-Shaking Crosshole Testing in Progress to Characterize Soil

Note: General arrangement used as the field verification procedure.
Pre-Shaking Characterization of Soil: Direct-Push Crosshole Seismic Testing to Determine V_p and V_s
Generalized Field Set-Up: T-Rex Shaking of an Embedded Array of Sensors
Creating the Embedded Array of Sensors: Pushing Geophones and Pore-Pressure Transducers with T-Rex
Generalized Arrangement of Sensors to Evaluate r_u versus Time (N) and γ versus Time (N)

(a) Cross Section

(b) Instrumentation
In Situ Non-Linear Testing of Liquefiable Soils

Shallow In Situ Non-linear Testing of Liquefiable Soils
24-hr Process of Sensor Installation and Staged Loading with T-Rex at the Natural Soil Test Panel

(a) Install Sensors, Vertical Static Loading, and Demobilization

Vertical Static Load, kips

~ 60

Install Sensors

Overnight Consolidation Period

Constant Static Load During Consolidation and Shaking Periods

Demob

0

1:00 p

7:00 p

8:00 a

11:00 a

Time

Day 1

Day 2

(b) Staged, Horizontal Shaking with T-Rex
Natural Soil Test Panel at Site 6:
Stage 5 - Pore Water Pressure Ratio, r_u, versus Time

Shaking: 100 cycles at 10 Hz; Stage 5; Peak Horizontal Force \sim 91 kN (20,500 lbs)

Depth = 2.1 m

Notes:

$$r_u = \frac{u_{excess}}{\sigma_v'} ; \quad \text{CSR} = \frac{\tau}{\sigma_v'} ; \quad G = \frac{\tau}{\gamma} \quad \rightarrow \quad \tau = G \left(\frac{\gamma}{\gamma} \right)$$
Stage Testing at Natural Soil Test Panel, Site 6: r_u versus Log γ after 30 Cycles of Shaking at Each γ

PPT 9P, Depth 2.1 m, $V_P = 1,700 \text{m/s}$, $V_S = 139 \text{ m/s}$

N = 30

Shaking Stages: • Stage 1; ■ Stage 2; ◆ Stage 3; □ Stage 4; ○ Stage 5
2a. Modeling the Loading of the Natural Soil Test Panel Before T-Rex Shaking: Depth 2.1 m

G_{max} = 38.1 \text{ MPa}, \text{ From Field } V_S
\sigma_o' = 16.5 \text{ kPa}, V_S = 139 \text{ m/s}
Modeling the Loading of the Natural Soil Test Panel Before T-Rex Shaking: Depth 2.1 m

$G_{\text{max}}^* = 48.2 \, \text{MPa}$
$\sigma_o' = 26.5 \, \text{kPa}$, $V_S = 156 \, \text{m/s}$

Pre-Shaking Field Stage:
(1) ♦ G_{max} (No T-Rex)
(2) ● G_{max}^* (With T-Rex)
Modeling the Loading of the Natural Soil Test Panel Before T-Rex Shaking: Depth 2.1 m

\[
\frac{G}{G_{\text{max}(\text{T-Rex})}} = \frac{1}{\left(1 + \left(\frac{\gamma}{\gamma_r}\right)^a\right)^b} = \frac{1}{\left(1 + \left(\frac{\gamma}{0.017\%}\right)^{0.96}\right)^{0.55}}
\]

Pre-Shaking Field Stage:
1. \(G_{\text{max}} \) (No T-Rex)
2. \(G_{\text{max}} \) (With T-Rex)
3. \(G\text{-log}(\gamma) \) (Pre-Shaking)
2b. Modeling the Loading of the Natural Soil Test Panel During T-Rex Shaking: with Measured Values of r_u

- $G_{max}^* = 48.2 \text{ MPa}$
- $\sigma_o' = 26.5 \text{ kPa}$
- $G/G_{max}^* = 0.91$
- $\sigma_v' = 0.0\%$
- $CSR = 0.03$

N = 30
Depth = 2.1 m

Excess Pore Pressure Ratio, $r_u(\%)$

Shear Strain (%)

Shaking Stages: Stage 1
Modeling the Loading of the Natural Soil Test Panel During T-Rex Shaking: with Measured Values of r_u

Shear Modulus, G (MPa)

Greatest Shear Modulus, $G_{\text{max}}^* = 48.2$ MPa

Effective Stress, $\sigma_0' = 26.5$ kPa

$G / G_{\text{max}}^* = 0.68$

$r_u < 0.1\%$

CSR = 0.14

N = 30
Depth = 2.1 m
$r_u = u_{\text{excess}} / \sigma_v'$

If $r_u = 0$

Shaking Stages: ● Stage 1; ● Stage 2
Modeling the Loading of the Natural Soil Test Panel During T-Rex Shaking: with Measured Values of r_u

- $G_{\text{max}}^* = 48.2$ MPa
 - $\sigma_\circ' = 26.5$ kPa
- $G_{\text{max}} = 48.0$ MPa
 - $\sigma_\circ' = 26.3$ kPa
- $G/G_{\text{max}} = 0.56$
- $r_u = 0.8\%$
- $\text{CSR} = 0.22$
- $N = 30$
- Depth = 2.1 m
- $r_u = u_{\text{excess}}/\sigma_v'$

Shaking Stages:
- Stage 1
- Stage 2
- Stage 3
Modeling the Loading of the Natural Soil Test Panel During T-Rex Shaking: with Measured Values of r_u

- $G_{\text{max}}^* = 48.2$ MPa
- $\sigma_o' = 26.5$ kPa
- $G_{\text{max}} = 46.4$ MPa
- $\sigma_o' = 24.6$ kPa
- $r_u = 7.3\%$
- $\text{CSR} = 0.33$

- $N = 30$
- $\text{Depth} = 2.1$ m
- $r_u = \frac{u_{\text{excess}}}{\sigma_v'}$

Shaking Stages: ● Stage 1; ● Stage 2; ● Stage 3; ● Stage 4
Modeling the Loading of the Natural Soil Test Panel During T-Rex Shaking: with Measured Values of \(r_u \)

- **Stage 1**: \(G_{\text{max}}^* = 48.2 \text{ MPa} \), \(\sigma_o' = 26.5 \text{ kPa} \)
- **Stage 2**: \(G_{\text{max}} = 44.0 \text{ MPa} \), \(\sigma_o' = 22.0 \text{ kPa} \)
- **Stage 3**: \(r_u = 17.0\% \) CSR = 0.45

- **N = 30**
- **Depth = 2.1 m**
- **\(r_u = \frac{u_{\text{excess}}}{\sigma_v'} \)**

Shear Strain (%)

Shear Modulus, G (MPa)

Excess Pore Pressure Ratio, \(r_u \), %
2c. Predicting the Response of the Natural Soil Test Panel at High Levels of Shaking: with Estimated Values of r_u

Predicted Shaking Results:
- Stage 6

Shaking Stages:
- Stage 1
- Stage 2
- Stage 3
- Stage 4
- Stage 5

G\(_{\text{max}}^*\) = 48.2 MPa
\(\sigma_{o'}\) = 26.5 kPa

\(G_{\text{max}}\) = 40.4 Mpa
\(\sigma_{o'}\) = 18.6 kPa

\(r_u\) = 30 %
CSR = 0.48

\(G/G_{\text{max}}\) = 0.24

\(N = 30\)
Depth = 2.1 m
\(r_u = u_{\text{excess}}/\sigma_{v'}\)
Predicting the Response of the Natural Soil Test Panel at High Levels of Shaking: with Estimated Values of r_u

G_{max}^* = 48.2 MPa
$\sigma_0' = 26.5$ kPa

G_{max} = 26.9 MPa
$\sigma_0' = 8.1$ kPa

$N = 30$

Depth = 2.1 m

$r_u = 69\%$

$CSR = 0.33$

$G/G_{max} = 0.16$

Predicted Shaking Results: ● Stage 6; ● Stage 7 ($G/G_{max}^* = 0.09$)
2d. Comparing the Response of the Natural Soil Test Panel at High Levels of Shaking: with and without r_u

Predicted Shaking Results:
- Stage 6
- Stage 7

$G_{\text{max}}^* = 48.2 \text{ MPa}$
$\sigma'_o = 26.5 \text{ kPa}$
$ru = 69\%$
$\text{CSR} = 0.33$

Due to ru

If $ru = 0$

Comparing the Response of the Natural Soil Test Panel at High Levels of Shaking: with and without r_u

$N = 30$
Depth = 2.1 m
$r_u = \frac{u_{\text{excess}}}{\sigma_v'}$

Shear Modulus, G (MPa)

Excess Pore Pressure Ratio, r_u (%)

Shear Strain (%)

Shaking Stages:
- Stage 1
- Stage 2
- Stage 3
- Stage 4
- Stage 5

Predicted Shaking Results:
- Stage 6
- Stage 7
3. Combining the Laboratory G/G_{max} – Log γ Data (a) and the In-Situ r_u – Log γ Data (b)

- **Laboratory RC Test**
 - Specimen
 - LVDT
 - Proximator Probe
 - Drive Plate
 - Magnet
 - Accelerometer

- **In-Situ T-Rex Shaking Test**
 - State Loading
 - Dynamic Shaking

Notes:
1. Points were extrapolated to $\gamma = 0.3\%$.
2. γ_t^{pp} at $r_u = 0.3\%$.

Graphs:
- G/G_{max} vs. γ
- r_u vs. Log γ

Data:
- $S6 (2.1 \text{ m}) SP (\text{Avg Dr~40\%}) : \sigma_0' = 28 \text{ kPa}$
- Determined in Field

Equations:
- $G/G_{\text{max}} = \log \gamma$
- $(r_u = 0)$

Excess Pore Pressure Ratio, r_u %
- RC Testing; $S_r \sim 20\%$
- Pore Pressure Ratio r_u

γ_e

References:
- Wang, 2018
Combining the Laboratory $G/G_{\text{max}} - \log \gamma$ Data (a) and the In-Situ $r_u - \log \gamma$ Data (b)

Laboratory RC Test

- Top Cap
- Specimen
- Base Pedestal ("Fixed Base")
- D = 5.1 cm
- $H = 10.2$ cm

In-Situ T-Rex Shaking Test

- Dynamic Shaking
- State Loading
- Instrumented Zone
- Not to scale

Graph

- Normalized Shear Modulus, G/G_{max}
- Shear Strain, γ, %
- Excess Pore Pressure Ratio, r_u, %

- S6 (2.1 m) SP (Avg Dr~40%) : $\sigma_0' = 28$ kPa

- $G/G_{\text{max}} - \log \gamma$ (Wang, 2018) ($r_u = 0$)

- $r_u - \log \gamma$ (N = 30 cycles)

- RC Testing; $S_r \sim 20$
- Pore Pressure Ratio r_u
- Determined in Field
- RC Corrected for $r_u > 0$
- Changed due to $r_u > 0$
Creating the $\tau - \gamma$ Curve for $r_u = 0$ from the Laboratory $G/G_{\text{max}} - \log \gamma$ Data and the In-Situ G_{max}^*

Shear Stress vs. Shear Strain at $\sigma_0' \sim 28$ kPa
(Represents In-Situ Condition)

- $G/G_{\text{max}} = 0.65$ where $r_u = 0.5\%$
- $G/G_{\text{max}} = 0.35$ $\text{CSR} = 0.43$
- $G/G_{\text{max}} = 0.26$ $\text{CSR} = 0.62$
- $G/G_{\text{max}} = 0.21$ $\text{CSR} = 0.76$

Extrapolated Laboratory Data

Creating the $\tau - \gamma$ Curve from Laboratory $G/G_{\text{max}} - \log \gamma$ Data and the In-Situ G_{max}^*
Creating the $\tau - \gamma$ Curve for $r_u > 0$ from the Laboratory $G/G_{\text{max}} - \log \gamma$ Data and the In-Situ G_{max}^*

Shear Stress vs. Shear Strain at $\sigma_0' \sim 28$ kPa
(Represents In-Situ Condition)

$G/G_{\text{max}} = 0.65$ where $r_u = 0.5\%$

$G/G_{\text{max}} = 0.35$
$CSR = 0.43$

$G/G_{\text{max}} = 0.33$
$CSR = 0.40$

$G/G_{\text{max}} = 0.26$
$CSR = 0.62$

$G/G_{\text{max}} = 0.21$
$CSR = 0.76$

Extrapolated Field Data

$r_u > 0$
4a. Improved Laboratory Testing and Modeling Using Combined Dynamic Resonant Column (RC) and Cyclic Torsional Shear (TS) Equipment

RC Testing:

1. More Data from Non-Plastic Sandy Soils.

2. Wide Range in Effective Confining Pressures, $\sigma_0' = 0.14$ to 14 atm.

3. Wide Range in Strains, $\gamma \sim 10^{-5} \%$ to 0.3% or more.

4. Model for the G- Log γ Relationship is:

 $$G = G_{\text{max}} \left(1/(1 + (\gamma/\gamma_r)^a)^b\right)$$
More Effective Constitutive Model for Sands (SP, SW, and SM)

S6 (2.1 m) (Avg Dr~40%) : $\sigma_0' = 28$ kPa

$G/G_{\text{max}} - \log \gamma$

(Wang, 2018)

$G/G_{\text{max}} - \log \gamma$

(Darendeli, 2001)

Note: 1. Curves were extrapolated to $\gamma = 0.3\%$.

Material : SP

Excess Pore Pressure Ratio, r_u, %

Normalized Shear Modulus, G/G_{max}

RC Testing; $S_r \sim 20\%$

Darendeli, 2001

Wang, 2018
Improved Laboratory Testing and Modeling Using Combined Dynamic Resonant Column (RC) and Cyclic Torsional Shear (TS) Equipment

TS Testing:

1. Testing Hollow Specimens.
2. Evaluating Effects of S_r and N.
3. Determining γ_t^{PP} (Threshold for Pore Pressure Generation).
4. Model for the $G – \log \gamma$ Relationship is
 $G = G_{max} \left(1/(1 + (\gamma/\gamma_r)^a)^b\right)$
Pore Water Pressure Generation Data from Laboratory TS Test (0.54 atm, Strain = 0.05%, N = 30 cycles)