Slide Stabilization with a 17-Meter Tall Reinforced Earth Fill: Lessons Learned

By Jose N. Gomez, PE, MSc
Principal Engineer
ECS Mid-Atlantic, LLC

Williamsburg, October 1, 2013
Presentation Content

- Introduction
- Soil Profile and Temporal Support System
- Cause of the Earth Slide
- Rehabilitation Alternatives
- Reinforced Earth Fill Design Considerations
 Fill Properties
- Construction Experiences and Behavior
- Lessons Learned
Introduction
Geotechnical Minute....
Slide Location – Aerial View
Within the City Financial Center

8,000 + VPD

Bldg:
100,000 SF Lot
1M SF Total
19 Stories
4 Bsmts (then 5)
Breaking News…
May 9, 1994

Tension Cracks
Slide Cross Section

-17 meters
Soil Profile and Temporal Support System

Jose N. Gomez, PE, MSc
ECS Mid-Atlantic, LLC

Williamsburg, October 1, 2013
“Detailed” Soil Profile

Collapsed Sector

125 ft

U 1 Medium Gravel, clayey-sandy matrix
U 2 Coarse Gravel, sandy-silty matrix
U 3 Silty-sandy Clay

Caissons

From SCI
Cause of the Earth Slide

Jose N. Gomez, PE, MSc
ECS Mid-Atlantic, LLC

Williamsburg, October 1, 2013
What Was Going On??

The Buzz:
A Water Pipe Broke…
Water Pressure Built Up… and Then… Everything Slid Down..

The Truth:
Earth Moved.. And Then, Water Pipe Broke…
Cause of the Earth Slide

Lateral Earth Pressure Diagrams

Flexible Walls

From SCI

U 3 Silty-sandy CLAY

U 1 and **U 2** Granular/Coarse Soils

More Likely Earth Pressure

1,102 psf

Assumed Lateral Earth Pressure

Rankine Failure Surface

1,102 psf

940 psf

4,552 psf

2,756 psf

4x !!
Lessons Learned-Lateral Earth Pressure

BIG Lessons Learned:

• CALL Geotech Eng. to Make decisions Involving Soil Issues

• Complete/Additional Geotechnical Exploration

• Do not Assume Soil Profile because Everything is All Right…

• Verify Changes in Soil Conditions
Rehabilitation Alternatives

Jose N. Gomez, PE, MSc
ECS Mid-Atlantic, LLC

Williamsburg, October 1, 2013
Rehabilitation Alternatives

Purposes:

• Fast Track (Traffic Problem – 8,000 VPD)
• Quick Design Turn Around
• Do Not Reduce Bldg Footprint!
• Safe
• Economical
Rehabilitation Alternatives

Excavation footprint taken by 2: 17% or 40.1% of total bldg area
Reinforced Earth Fill Design Considerations – Fill Properties

Jose N. Gomez, PE, MSc
ECS Mid-Atlantic, LLC

Williamsburg, October 1, 2013
Reinforced Earth Fill
Design Considerations

- **Internal Stability**
 - Material Properties (Geotextiles and Fill)
 - Pullout
 - Tensile Overstress
 - Local

- **External Stability**
 - Bearing Capacity
 - Slope Stability (Rigid Block Sliding)
Internal Stability

After G. F. Sowers

Lateral Earth Pressure
Earth Thrust
Tension Force
Equivalent Length
Failure Hypothesis
3D rather than a 2D Failure Mechanism

W Geotextile

NW Geotextile was selected
Material Properties

Earth Fill

Fill Properties
- Type: GC
- PI: 16%
- S200: 19%
- UW_{dry}: 1.86 Tn/m³ (116 pcf)
- w: 11.1%

Properties
- PI: 16%
- S200: 19%
- UW_{dry}: 1.86 Tn/m³ (116 pcf)
- w: 11.1%

Geosynthetics
- Geogrid
- NW Geotextile
- Geomalla

Graphs
- Shear Stress vs. Normal Stress
- Tensile Stress vs. Strain
- Working Stress vs. Strain
Stability Analysis Parameters

<table>
<thead>
<tr>
<th>Material</th>
<th>γ (kN/m³)</th>
<th>ϕ (°)</th>
<th>C (kN/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforced Fill</td>
<td>21.9</td>
<td>35</td>
<td>0 – 200</td>
</tr>
<tr>
<td>Failure Surface</td>
<td>-</td>
<td>30</td>
<td>0 – 200</td>
</tr>
</tbody>
</table>

External Stability

Nota: Ver figura 9, planta
External Stability-Load Considerations

1. Initial Stability: Bottom Support; **No Traffic**

2. Intermediate Stability: Bottom Support; **Traffic**

3. Final Stability: Bottom/Top support; **Traffic**

![Graph showing stability conditions]
Construction Experiences and Behavior
Construction Stages

Shotcrete Wall

Stage 1

Stage 2
Reinforced Fill – Clayey Gravel
Compactors

95% Mod. Proctor Thin Lifts
Bottom Corner
Removing Shotcrete
Intermediate Supports

Stage 1
Tallest Face

Geotextile and Geogrid
Tide Work Conditions - Tallest Face
Construction Stages
Few Meters Away From Top
Near To The Top
Instrumentation

PR Settlement Plates
BM Monuments
Making It Watertight
Works Never Stopped

After 25 Days of Ground Zero
Psychological Support
Lessons Learned-Design & Construction

- Geotechnical involvement must be continuous, from beginning to end
- If things are working, do not assume they will continue to do so: get the facts
- Working along limited spaces requires patience and sharp approach
- Do Not Forget To Drill Those Borings!!
Thank You ! !!

Jose N. Gomez, PE, MSc
ECS Mid-Atlantic, LLC